Quote:
Originally Posted by RedShoe
.33 +.33 +.33 = .99 Decimals are inaccurate.
This math professor in the article is a tool.
|
You can use simple algebra and be accurate. Just assume all the .33333's are repeating.
Let x = .33333+.33333+.33333 = 3(.33333...)
10x = 3*(3.33333) ; multiply both sides by 10.
Subtract the first term from the first and solve for x.
(10x-x) = 3*(3.33333)-3*(.33333)
9x = 3(3.33333-.33333)
9x = 3 (3)
9x = 9
x = 1